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Abstract

We look at the poset version of the secretary issue
for rooted complete binary trees of length n, where
the 2na complete binary trees with roots at level
atl (counting from the leaves) are colored with
various hues that are visible to the eye.

The selector and the vertices above level a + 1 are
naturally colored based on the vertices that came
before them. We discover a near-optimal strategy
for more than two colors as well as an optimal
halting time for trees with only two colors.

1 Introduction

The secretary problem is a well-known name for
the following issue. There are n linearly arranged
things. A selection goes through each one in a
random permutation. Only the objects that have
already undergone examination by the selector can
be compared to the current one. The selector's goal
is to select the current item with the highest
likelihood that it is the best option available. The
term "secretary problem" refers to a fun variation
of the problem where a selector (the administrator)
evaluates applicants (our linearly ordered objects)
for the position of a secretary with the objective of
selecting the candidate with the highest probability
online. For a solution to this issue, see Lindley
(1961).

There has been a lot of interest in this issue. It was
given consideration in several enriched forms.
Ferguson's study is intriguing (1989). The secretary
problem naturally generalizes to posets as well.
Specifically, we can suppose that the selector can
see the partial order that the candidates up to that
point have induced, and that the goal is to select,
once again online, a maximal element (there may
be more than one) of the underlying poset.

This topic was introduced in Stadje (1980), and
Russian mathematicians covered it in a number of
publications that were well-reviewed in Gnedin
(1992). Preater (1999), Garrod and Morris (2013),
Freij and Wistlund (2010), Georgiou et al. (2008),
and Kumar et al. (2008) all considered efficient
universal algorithms for families of posets whose

structure is unknown to the selector before to the
search (2011). Ka'zmierczak (2013), Tkocz and
Tkocz, and Ka'zmierczak identified the best
methods for basic non-linear posets. In Garrod et
al. (2012), a poset secretary dilemma was also
taken into account, where each candidate has a twin
who is equally qualified. Morayne discovered an
ideal technique for the posets whose Hasse
diagrams are full binary trees of a specified length
(1998). In the poset variation of the secretary issue,
other model assumptions may be made. Posets, for
instance, have sides, therefore it seems sense to
suppose that the selector can determine which side
a specific element originates from. The full binary
tree model used in Morayne is enhanced in this
study (1998). In other words, in the original design,
the selector can only view the poset caused by the
components that have already arrived, without
knowing which side of the tree the seen elements
originated from. However, if we assume that the
items on the left and right are black and that the
selector can see these colors, then this information
can be given. In reality, a model with additional
color is an option. We suppose that the full subtrees
in our underlying complete binary tree are colored
differently starting at a certain level down (see Fig.
1 where four different colors are used below level
four where we count the levels from the leaves).
This type of colored complete binary tree will be
referred to as CCBTk n, where n is the tree's height
and k is the number of uncolored levels, or just
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CCBT. It doesn't matter whether the element
appears after or before x if, during a search, an
element x from the non-colored (upper) part of the
tree appears, it will take the color of the first
colored element related to x from the current
permutation. (Fig. 2 illustrates the first seven
consecutive observations of the selector for a
permutation.
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Fig.2 Example of consecutive ohservations; note that the color 7 of xq has been inherited from x) and the
color [ of xg has been inherited from 17 (hecause the next colored element related o 1 in this permutation
is x7, despite the fact that x7 appeared after x5)

tation ((x1, V), (x2, ¥), (x3, 7), (xg, V), (x5, 0), (s, 0, (x7,00)...); note that the
color ¢y = ¥ of x4 has been inherited from x; and the color ¢g = O of x;; has been
inherited from 17 (because the next colored element related to xg in this permutation
15 7, despite the fact that x7 appeared after xq); note also that at t = 3 xy is already
identified as lying in the originally uncolored part because there are more than one
colors below xy).

In this note we limit ourselves to an informal treatment, referring the reader to,
e.g. Morayne (1998) or Preater (1999) for further details. We hope the following
description will be sufficient to follow the argument given and to enable the reader to
add the formalism lacked.

We will refer to posets whose Hasse diagrams are trees simply as trees. We will
also call complete binary trees CBT and complete binary trees of height n CBT,.

Let N = 2" — 1. The elementary events of our probability space are permutations
x = (x1, x2,..., xy) of the vertices of our CCBT; each such permutation has uniquely
assigned sequence of colors ¢{x) = (e), c3, ..., ey): ¢ is the color of the vertex x;
ifitis colored in our CCBT, or, if it is in the uncolored part, ¢; is the color of the first
colored element in the permutation x that is in the CCBT below x;.

We deal with a stochastic process whose values are colored and labeled posets [T,
isomorphic to subposets of our CCBT induced by the first f elements xy,..., x, of x
where vertices are labelled with the times they arrived at and have colors from ¢(x).

We are looking for a stopping time 7 :x — t{x) € {1,..., n] such that the vertex
ry) 15 equal to the root 1 of our CCBT with the maximal possible probability. The
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m=A

/BT,

Fig.3 CBTAY

decision of selection is based only on the structure of [T, and the information about
colors of the elements of T1; as described above. In other words the value ¢ of 7(x)
must be determinable only by what has happened by t = t(x) (this exactly means
that 15 a stopping time).

More formally let @ = §; (the family of all permutations of 1,....n ) and F,
be the o-algebra of events that depend only of the first £ elements of a permutation
(the atoms of F, are sets Ay, = {77 € Sandm =ip.....m =i} A
stopping time 7 : @ = {1,..., n} is a random variable such that r'l[lrl) e F(tli)
depends only on what happened till time 1). Let form € Q X(7) = Lif z(t) = |
and X, (7) = 0 otherwise. The selectors aim is to find a stopping time t* such that
P[X;+ = 1]z P[X; = I] for all stopping times t.

Let ¥ be a poset whose Hasse diagram consists of a chain of length m — 1 and a
complete binary tree CBT, under this chain (see Fig. 3). We will call such a poset a
complete binary tree with antenna, CBTA for short or simply CBTA.

The paper is organized as follows. Section 2 contains some combinatorial facts
about counting embeddings of a tree into a tree. They will be necessary for estimating
probabilities of success conditioned by the fact that the selector sees a specific structure
at a given moment. In Sect. 3 we will find the strategy for CCB]’f‘ that will be near
optimal in the following sense: for all multicolor structures and asymptotically almost
all monochromatic ones the selector's decisions are optimal. For other monochromatic
structures the strategy is optimal asymptotically.

2 Embeddings of non-linear trees into CET and CB

Let T be any tree. Let /{T") be the number of leaves «
trees. Let § be a subset of T such that § and T3 are 1sc
& an embedding of T> into Tj. Let us call § a goad em
of T| and a bad embedding if it does not contain the ro

Let A7 ™", By ", C7 " be the number of good, bad, all
respectively. Let A7, B}, C} be th number of good, |
CBT, ., respectively.

Throughout this section we establish several facts
mention that such counting problems stemming from tk
attracted independent attention and were considered |
2006), Kuchta et al. (2005, 2000) and Georgiou (2005
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Fig.4 §

Letk € {1,2,...}. Let §' be any tree whose first k biggest elements form a chain
and the k'th element has more than one child. (see Fig. 4). Let § be the subset of §'
which consists of all elements from §' except the first k — | ones. Let 5 be the height
of §.

We will use the following well known elementary fact about the convergence of
a sequence of series to a series (which is a discrete version and a consequence of
Lebesgue's bounded convergence theorem). We will not prove it here.

Lemma 21 Letig e N Let 0 <y = wy fori = iy and Zfﬂn Wy < 00,
Then if limy o0 1t = vy then ¥ gty = ¥ jop Ui

We will also use the following technical lemma:

c+|") (E‘+:'

Lemma 2.2 Ey—Jr (( e d—l)) _ (f);c:d € N (we use the conven-
=0

d
tion (;) =0forc<d).

Proof Let

Thusmget'z’:{;). o

Now we will prove a series of lemmas comparing the numbers of particular embed-
dings into CBT and CRTA.

Lemma 23 A% > 20941

Proof The proof goes along the same lines as the proof of Propostion 2.1 in Kubicki
etal. (2003). O
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Lemma 24 lim, . . AE“ JAL =219
Proof From Kubicki et al. (2003) we know that Iim,‘_.xg = -1 gp
5

. [
lim, . —-‘}..:— =2 Thys

difl

i+l —h i+l Al(5)-1
i A _ET B 2 g e
- Af j"'} B T 21—

&

Let a; be the number of embeddings of § into CBT, such that the maximal elemer

il

of § 15 on level i (the leaves of CBT,, are on level 1). Of course, ”:r—" = %i—r. L
i g

Ye=m+yforsomeye{l,2 ...} Lets be the height of §.

Lemma 25 If1(8') = 2and 2k = m = k, then .’.’;.'" = B;{'”.
Proof Note that

=1
Wt n+m-i-1 m-1
A.;r :Z( ) )-ﬂ!-l-(k_l)‘ﬂ”

=5

and

=1
na_ ntm=-i=2\  [m-1
BS. _Z( -1 )-a&( k )-an.

I=s

The inequality .4;],'" > B;:'" is equivalent to the inequality:

S e ) )

1=

which can be written as

i) )
[ENSR

Changing the order of summation we obtain the inequality

S ) ) ) -
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and replacing m by 2k — y, dividing both sides by a, and using (ﬂ( - I} -

k-1
(Zk _; B 1) = (2’(!:'_ l)iweuhmin

"f((zk-y-|+f)_(2k-y-1+f)) ot {(Ek—_v—l)}'
k-1 k-2 T\ k-l
i=0 . k

(1)

pa]of

Now removing from the left -hand side the terms lower than 0 and applying s
J]—l,r we get the following stronger inequality

IT—I—J

Z h-y-1+i\ [T-y-1+i L k-y-147
EANS -2 ) FC - v
Now we will show that

i oy-Li)_(%-y-tai)) L (%-y-1)
A -2 )T k- )k

or, equivalently,

i((Ek—Hi) (2k—2+:‘)) |<4,.(2k—_\'—l)}
[T B (S I J BT N O B S
= 4 k

Itis easy to show that the right-hand side of the inequality is minimal for y = 1. Soit
is enough to show that

S () ()

which is equivalent to

o

Z[Ek—HIJ(Ek—2+2)~~-(2k—2+4‘)(4‘+ 1)
(k+1)(k+2)- - (k+i)d+!

But 3"‘_' '_I_"':' < 2 for every ¢ = 0. Thus the conclusion folows from the equality
;::ﬂ ;Iilk- =2 0

Lemma 26 Ifm < kand1(S') = 2, then A" = BS".

Proof Note thatm < k means that v = k4 7 forsome 7 € {1, 2, ). From the proof
of Lemma 2.5 we know that the inequality AC" > Bo" is equivalent to inequality
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(1) with the right-hand side equal 1o 0 (we assume [; ) =0 fora < b). Sowe have

to prove that

n=1-1 Yy +J' - y- | +i [ ]
Z A — )
& k-1 k-1 [

which is equivalent to

i iy peiy BUR

Note that the first k + 7 — 2 terms of the sum above are < 0. We move them to the
other side and we obtain the following inequality (note thatifk +z-2=n-1-5
then our inequality is obvious so further we assume thatk+2-2<n - 1-3).

D)
(e

Now we shift a summation index, we divide both sides by a; .+ and we obtain

n=s—k-141 Me—3+i ~ -3+ dp—i-k-z+1
Z k=1 k-2 ‘ Oy—f—142

i=h

k-3 ; .
. Z k—z=1+i) [k-z-1+i -1
. k-1 k-1 [y

=0

Applying == < = | and replacing the summation boundary by oo we get the follow:

Iy
stronger |nequ:|l|t\r

BP0
()

Let L, R be the left-hand and the right-hand side of the inequality above, resp
tively. Using L < oo (Lemma 2.2) we can write — & as follows:

JOURNALOF
/CURRENT SCIENCE

S () e
k—;:;ﬂ')_(k—; |+4))‘2-f-1
S )

()

=0

Hence (2) is equivalent to
9]
.~ k-z-1+i k-z-1+i -
_’)H‘»l _ IJJ
ez ()T

Now using Lemma 2.2 we get

g((k—;::ﬂ')_(k—;:éﬂ'))lz_;q :(x;:1):n

forz = 0. 0

Lemma27 Forl($) =2 if y <k (ic.m = k) then

) BJT!IJT _ Amr.ﬂ
lim S—5_ =
=+ Iy

and if y =k {i.e.m = k) then

. B?.'H _ AJ;]’.M
lim ————— =0
H=+30 ﬂ”

AR

By A
Proof From the proof of Lemma 2.5 (inequality (1)) the inequality <—= = 0
takes the form: )

i mn n-l-g
By A" y ((Zk—.\‘—l+£')_(Zk—.\‘—1+f))‘ﬂn—l—f
P A\ e k-2 o

C(%-y-1)y
k-1 )k
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Mow we use Lemma 2.1 for

(k- y—r+i)y 2% -
Wi = k—1

and

{2 -y-1+i) (2
W= = k—1

.lI]

We know that u; , — v (use -ﬂ—l- 1-51- and L

big enough, we have u; , = v {L.Emma 2 3.
Hence

H—=D0

1M ] .
_BRt ARt :
lim ——— =V —

dy

where

Now using Lemma 2.2 for¢ = 2k - y - Tand d = k - 1 we obtain V = (;) -

)

. - ¢ Ay S . .
So the inequality lim,,_ —ﬂu—"‘— = (s equivalent to the inequality & = v.
il 8

And, analogously, the equality lim, . », -JT_L =0isequivalenttok=y. O

Lemma 28 If1(S') = 2, then: if v < k {ie. m = k) then lim, B;’.'"M;J;” =1,
and if y = k (i.e.m = k) then lim, ., B'" ”,‘AM =1

Proof First we will show that 0 < lim,—.; Af.'" Jay < .
From the proof of Lemma 2.5 we know that

wa -l

i_z n+m—i-1 .i.|. m-1

0y _-_ k-1 iy k-1
ﬂ—l_.\'

B ntm-i-2-s ﬂ¢+,+ m-|
=2 k=2 ) k-l

i=l
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JT—I—.\‘
m+i=1\ G-1-i fm-1
- Z( k-2 ) o +(k—1)

i=0

t=l-i
m+i-1y |1 m-1
- Z( k-2 )"zTr(k-l)'

But

4] 4]
mti-1y | I e |
Z( (=2 )~2r.—_l-:—{k_2}[2[m+a—l) Erl

i=0

|
j: 7
{k 7].r Z 2:+2—m

]_f.l‘l'—

-2 X k-)

TR

i=si-1

AT
because Z]_n 7 < ooforany ¢ < oo. So by Lemma 11 lim, . —L exists and
L] LF JI

.4
|III1,HM < 00. As [ (o II) = | the inequality 0 < limy— s —*— is obvious.

Now we get
it Jt Bm Xl Am‘n
. 5

Im —=1+ lm
P A;I;.r] A—+80 Am M
it 1 i
B -4

=1+ lim A .
=00 4
(]

A" . .
But0 < Iim,‘_.x—‘— < o0 and (by Lemma 2.7)if v < k then 0 < lim,—,

B -A
-i—'*-{coandllmn_.._,_-ﬂ—ﬂ- Oify=k O

3 Near optimal strategy

Recall that CCBT? is a colored complete binary tree of height 4 with m non-colored
levels where all complete binary subtrees below level m are colored with distinct
colors. In this section we will define a stopping time 7y for our best choice problem
for CC BTEJ. Itis, in general, not optimal but nearly optimal in the sense that within
the event of probability asymptotically equal to one it behaves in the optimal way and
in the marginal situations, ie. those of probability tending to zero, even if it is not
optimal for some given fixed poset we deal with, it is either optimal for this poset
from some 7 on or asymptotically this strategy gives us the same result as the optimal
strategy.
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Letn =i —m 4 1. Let g be the number of embeddings of §' into CBTA} suc
that the first k elements of §" are among the first m = 2k elements of CBTAY. Let

be the number of remaining embeddings of §" into CBTAY'. Note that g = (Zkk}A

andhgs_g{f_kl).

Now let us note that

| k=1 h I 1 h
Pl = 1G] € - —— 4 = - —

“lgth X gt+h 2 kg+th

2%
it
o B k—l)

But we know that there exists some ¢ = 0 such that from some n on (becau

limy_ag # =81 1). So we can write
5
I ¢
Pl =1]Gy] = 5 - i
On the other hand

Pllvg =0Ge N # 1) =1-

'm -1

So our inequality follows from

which is true for some ng and i > ny, because limj_, 5, ;ﬁ"—] =(mdc=0. 0

Theorem 3.2 Ler x; = max{x, ..., 5 ) and xy,.... x; form @ monachwomatic non-
linear onder § € S'(k). If 2 < m then plaving opiimal strategy we should not
stop.

Proof Asin the proof of Thearem 3.1 let G be an event such that v, x, form §'.
We want to show that

Pllve = 1G] < Pllxeg = |Gy N [y # 1] Pllxe # 1G]

Note that Pl = 1]Gy) < £ < L and anﬂ =GNy #11 = 57

==

Sowe need to show thatm = | < (m + ”‘z:T which is obviously true. O

The theorems above justify our claim that 1 is near-optimal in the sense stated in
the beginning of this section,
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Fig.5 CCBT!

4 Optimal stopping time for two-colored complete binary tree f."f."fl'!'}li

For the case (' CBT:]]‘ i.e. when a CBT; is colored with only two colors (say the right-
hand side is black and the left-hand side is white, see Fig. 5) we can find an optimal
stopping time 1.

Let us define 7 as the stopping time such that = ¢ if and only if f is the first time
such that x; = max{xy, ..., x;} and one of the following situations occurs:

{13 xj..... x; form a cham and 2¢ = n;
{2) x|..... x; are colored with 2 different colors;
(3) x|..... x; form a monochromatic non-linear order §' € §'(k) and & = 1.

If none of these situations occurs then 7 = 2% — 1.
Note that this strategy is the near-optimal strategy from the previous section for the
case of two colors,

Letus denote by D; ; the eventwhen {x,, . ..., x;] form a monochromatic non-linear
order &' € 8'(i) and x, = max{xy, ..., x;}. Let U be the order constructed from §'
by removing from §' the maximal element.

Theorem 4.1 The stopping time © is optimal for CCBT]!.

Proof The optimality of 7 in situations (1) and (2) was proved in the previous sections.
Now we will show that for D; ; for i = 1 we should stop.

Let T be any non-linear order with one maximal element. Let A7, By, Cr be the
number of good, bad, all embeddings of T into CBT,, respectively. Let A7, By, Cy be
a number of good, bad, all embeddings of T into CBTAZ, respectively. From Morayne
(1998) we know that Ay = By. We will show LhatA’ = B’

It is enough to notice IhatA ¢ = Cus Bs =Cy andA;r = By. Note also that
the inequality Ay = By is equwalem to each of the inequalities Cr = 2By and
247 = Cy (because Cr = A7 + Br). Now we can write
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A'i;» =Cy=2y=Uy>Cy= Brg

thus we should stop.

1t remains to show that stopping for D, is not optimal. Assume that none of
situations (1), (2) and (3) occurred before time £. Let 2 be the son of 1 which has the
colorof §'

First note that

Pllx, =1)|Dy,) = Pl = 2Dy
and
Pllee =110y N[x =21= 1.
We want to show that
Pl = 1Dy] < Pllwe = 11Dy, N £ 11]- Pl #1112y,
But

Pllxe =12y N £ 1] Pl £ 1]1Dy, ]
= Pllxe = 11Dy N £ 110 = 2]
Pl =20|Dy N 2 101 Pl 211D
+Pllxe =110y N # 10 [ £ 2]
Pl # 2Dy Ny 2 10)- Pl £ 1]1Dy
2 Pllxe = 11Dy Nl # 110 [ = 2]
Pl =20|Dy N 2 101 Pl 211D
= Pl =20 [x # 11Dy ] = Pl = 2) Dy ] = Pl = 1Dy, )

It is interesting to compare the efficiency of optim
complete binary trees and the non-colored complete

The difference between these two cases appears 3
chromatic order §' € S'(1) and the last element we
stopped earlier. In such situations in the case of two-
continue and in the case of non-colored complete bi
(1998)).

Thus in the first case we make a mistake 2.4.'2"_1 tim
times, where AT, €T is the number of good,all embe:
respectively.

Let P, P> be the probabilities of making a mist:
non-colored one, respectively, in the situations when
P¢ be the probability of the event that at some time
and the decisions at the moment ¢ in both cases are d

Because we know from Morayne (1998) that 24 > C¥ we get

n—="n

P=) P A Y r G, lp
=L by L =
8l At G §e8) W+ G)

Sowe can see that, rather surprisingly, atwo-coloring of CBT, even in the (marginal)
situations where the strategies differ, does not reduce the probability of mistake more

than twice.
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